Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 165(3): 303-317, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36547371

RESUMO

Cells possess intrinsic features that are inheritable via epigenetic regulation, such as DNA methylation and histone modification. These inheritable features maintain a unique gene expression pattern, underlying cellular memory. Because of the degradation or displacement of mitotic chromosomes, most transcription factors do not contribute to cellular memory. However, accumulating in vitro evidence indicates that some transcription factors can be retained in mitotic chromosomes called as bookmarking. Such transcription factors may contribute to a novel third mechanism of cellular memory. Since most findings of transcription factor bookmarking have been reported in vitro, little is currently known in vivo. In the neural tube of mouse embryos, we discovered that OLIG2, a basic helix loop helix (bHLH) transcription factor that regulates proliferation of neural progenitors and the cell fate of motoneurons and oligodendrocytes, binds to chromatin through every cell cycle including M-phase. OLIG2 chromosomal localization coincides with mitotic cell features such as the phosphorylation of histone H3, KI67, and nuclear membrane breakdown. Chromosomal localization of OLIG2 is regulated by an N-terminus triple serine motif. Photobleaching analysis revealed slow OLIG2 mobility, suggesting a high affinity of OLIG2 to DNA. In Olig2 N-terminal deletion mutant mice, motoneurons and oligodendrocyte progenitor numbers are reduced in the neural tube, suggesting that the bookmarking regulatory domain is important for OLIG2 function. We conclude that OLIG2 is a de novo in vivo bookmarking transcription factor. Our results demonstrate the presence of in vivo bookmarking in a living organism and illustrate a novel function of transcription factors.


Assuntos
Epigênese Genética , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/genética , Tubo Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Oligodendroglia/metabolismo
2.
Dev Growth Differ ; 64(9): 494-500, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36308507

RESUMO

Urodele amphibians have exceptional regeneration ability in various organs. Among these, the Iberian ribbed newt (Pleurodeles waltl) has emerged as a useful model organism for investigating the mechanisms underlying regeneration. Neural stem cells (NSCs) are an important source of regeneration in the central nervous system (CNS) and their culture method in vitro has been well established. NSCs form spherical cell aggregates called neurospheres and their formation has been demonstrated in various vertebrates, including some urodele species, but not in P. waltl. In this study, we reported neurosphere formation in brain- and spinal cord-derived cells of post-metamorphic P. waltl. These neurospheres showed proliferative activity and similar expression of marker proteins. However, the surface morphology was found to vary according to their origin, implying that the characteristics of the neurospheres generated from the brain and spinal cord could be similar but not identical. Subsequent in vitro differentiation analysis demonstrated that spinal cord-derived neurospheres gave rise to neurons and glial cells. We also found that cells in neurospheres from P. waltl differentiated to oligodendrocytes, whereas those from axolotls were reported not to differentiate to this cell type under standard culture conditions. Based on our findings, implantation of genetically modified neurospheres together with associated technical advantages in P. waltl could reveal pivotal gene(s) and/or signaling pathway(s) essential for the complete spinal cord regeneration ability in the future.


Assuntos
Células-Tronco Neurais , Pleurodeles , Animais , Pleurodeles/anatomia & histologia , Pleurodeles/metabolismo , Salamandridae , Medula Espinal , Neurônios
3.
Front Cell Neurosci ; 16: 869398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496917

RESUMO

Fragile X syndrome (FXS) is an inherited intellectual disability caused by a deficiency in Fragile X mental retardation 1 (Fmr1) gene expression. Recent studies have proposed the importance of cytoplasmic polyadenylation element-binding protein 1 (CPEB1) in FXS pathology; however, the molecular interaction between Fmr1 mRNA and CPEB1 has not been fully investigated. Here, we revealed that CPEB1 co-localized and interacted with Fmr1 mRNA in hippocampal and cerebellar neurons and culture cells. Furthermore, CPEB1 knockdown upregulated Fmr1 mRNA and protein levels and caused aberrant localization of Fragile X mental retardation protein in neurons. In an FXS cell model, CPEB1 knockdown upregulated the mRNA levels of several mitochondria-related genes and rescued the intracellular heat shock protein family A member 9 distribution. These findings suggest that CPEB1 post-transcriptionally regulated Fmr1 expression through the 3' untranslated region, and that CPEB1 knockdown might affect mitochondrial function.

4.
J Lipid Res ; 63(6): 100210, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35439525

RESUMO

Diverse molecular species of sulfatide with differences in FA lengths, unsaturation degrees, and hydroxylation statuses are expressed in the kidneys. However, the physiological functions of specific sulfatide species in the kidneys are unclear. Here, we evaluated the distribution of specific sulfatide species in the kidneys and their physiological functions. Electron microscopic analysis of kidneys of Cst-deficient mice lacking sulfatide showed vacuolar accumulation in the cytoplasm of intercalated cells in the collecting duct, whereas the proximal and distal tubules were unchanged. Immunohistochemical analysis revealed that vacuolar H+-ATPase-positive vesicles were accumulated in intercalated cells in sulfatide-deficient kidneys. Seventeen sulfatide species were detected in the murine kidney by iMScope MALDI-MS analysis. The distribution of the specific sulfatide species was classified into four patterns. Although most sulfatide species were highly expressed in the outer medullary layer, two unique sulfatide species of m/z 896.6 (predicted ceramide structure: t18:0-C22:0h) and m/z 924.6 (predicted ceramide structure: t18:0-C24:0h) were dispersed along the collecting duct, implying expression in intercalated cells. In addition, the intercalated cell-enriched fraction was purified by fluorescence-activated cell sorting using the anti-vacuolar H+-ATPase subunit 6V0A4, which predominantly contained sulfatide species (m/z 896.6 and 924.6). The Degs2 and Fa2h genes, which are responsible for ceramide hydroxylation, were expressed in the purified intercalated cells. These results suggested that sulfatide molecular species with ceramide composed of phytosphingosine (t18:0) and 2-hydroxy FAs, which were characteristically expressed in intercalated cells, were involved in the excretion of NH3 and protons into the urine.


Assuntos
Sulfoglicoesfingolipídeos , ATPases Vacuolares Próton-Translocadoras , Animais , Ceramidas , Rim/metabolismo , Camundongos , Esfingosina/análogos & derivados , ATPases Vacuolares Próton-Translocadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...